Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 1017394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385993

RESUMO

Three protein targets from SARS-CoV-2, the viral pathogen that causes COVID-19, are studied: the main protease, the 2'-O-RNA methyltransferase, and the nucleocapsid (N) protein. For the main protease, the nucleophilicity of the catalytic cysteine C145 is enabled by coupling to three histidine residues, H163 and H164 and catalytic dyad partner H41. These electrostatic couplings enable significant population of the deprotonated state of C145. For the RNA methyltransferase, the catalytic lysine K6968 that serves as a Brønsted base has significant population of its deprotonated state via strong coupling with K6844 and Y6845. For the main protease, Partial Order Optimum Likelihood (POOL) predicts two clusters of biochemically active residues; one includes the catalytic H41 and C145 and neighboring residues. The other surrounds a second pocket adjacent to the catalytic site and includes S1 residues F140, L141, H163, E166, and H172 and also S2 residue D187. This secondary recognition site could serve as an alternative target for the design of molecular probes. From in silico screening of library compounds, ligands with predicted affinity for the secondary site are reported. For the NSP16-NSP10 complex that comprises the RNA methyltransferase, three different sites are predicted. One is the catalytic core at the conserved K-D-K-E motif that includes catalytic residues D6928, K6968, and E7001 plus K6844. The second site surrounds the catalytic core and consists of Y6845, C6849, I6866, H6867, F6868, V6894, D6895, D6897, I6926, S6927, Y6930, and K6935. The third is located at the heterodimer interface. Ligands predicted to have high affinity for the first or second sites are reported. Three sites are also predicted for the nucleocapsid protein. This work uncovers key interactions that contribute to the function of the three viral proteins and also suggests alternative sites for ligand design.

2.
J Med Chem ; 65(14): 9939-9954, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35802702

RESUMO

An array of triazolopyridines based on JNJ-46356479 (6) were synthesized as potential positron emission tomography radiotracers for metabotropic glutamate receptor 2 (mGluR2). The selected candidates 8-10 featured enhanced positive allosteric modulator (PAM) activity (20-fold max.) and mGluR2 agonist activity (25-fold max.) compared to compound 6 in the cAMP GloSensor assays. Radiolabeling of compounds 8 and 9 (mG2P026) was achieved via Cu-mediated radiofluorination with satisfactory radiochemical yield, >5% (non-decay-corrected); high molar activity, >180 GBq/µmol; and excellent radiochemical purity, >98%. Preliminary characterization of [18F]8 and [18F]9 in rats confirmed their excellent brain permeability and binding kinetics. Further evaluation of [18F]9 in a non-human primate confirmed its superior brain heterogeneity in mapping mGluR2 and higher affinity than [18F]6. Pretreatment with different classes of PAMs in rats and a primate led to similarly enhanced brain uptake of [18F]9. As a selective ligand, [18F]9 has the potential to be developed for translational studies.


Assuntos
Receptores de Glutamato Metabotrópico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ligantes , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo
3.
Protein Sci ; 31(5): e4291, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481659

RESUMO

The computed electrostatic and proton transfer properties are studied for 20 enzymes that represent all six major enzyme commission classes and a variety of different folds. The properties of aspartate, glutamate, and lysine residues that have been previously experimentally determined to be catalytically active are reported. The catalytic aspartate and glutamate residues studied here are strongly coupled to at least one other aspartate or glutamate residue and often to multiple other carboxylate residues with intrinsic pKa differences less than 1 pH unit. Sometimes these catalytic acidic residues are also coupled to a histidine residue, such that the intrinsic pKa of the acidic residue is higher than that of the histidine. All catalytic lysine residues studied here are strongly coupled to tyrosine or cysteine residues, wherein the intrinsic pKa of the anion-forming residue is higher than that of the lysine. Some catalytic lysines are also coupled to other lysines with intrinsic pKa differences within 1 pH unit. Some evidence of the possible types of interactions that facilitate nucleophilicity is discussed. The interactions reported here provide important clues about how side chain functional groups that are weak Brønsted acids or bases for the free amino acid in solution can achieve catalytic potency and become strong acids, bases or nucleophiles in the enzymatic environment.


Assuntos
Aminoácidos , Histidina , Aminoácidos/química , Ácido Aspártico , Glutamatos , Lisina/química , Eletricidade Estática
4.
J Med Chem ; 65(3): 2593-2609, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089713

RESUMO

Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for several neuropsychiatric disorders. An mGluR2 function in etiology could be unveiled by positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13, [11C]mG2N001), a potent negative allosteric modulator (NAM), was developed to support this endeavor. [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/µmol (n = 5) and excellent radiochemical purity (>99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity and reduced accumulation with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions and resulted in high-contrast brain images. Therefore, [11C]13 is a potential candidate for translational PET imaging of the mGluR2 function.


Assuntos
Meios de Contraste/química , Ácidos Picolínicos/química , Piranos/química , Compostos Radiofarmacêuticos/química , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Meios de Contraste/síntese química , Meios de Contraste/metabolismo , Feminino , Ligantes , Macaca fascicularis , Masculino , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/metabolismo , Tomografia por Emissão de Pósitrons , Piranos/síntese química , Piranos/metabolismo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...